Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN) for Pipeline Corrosion Prediction

نویسندگان

  • Kien Ee Lee
  • Jafreezal bin Jaafar
چکیده

Artificial Neural Network (ANN) design has long been a complex problem because its performance depends heavily on the network topology and algorithm to train the set of synaptic weights. Particle Swarm Optimization (PSO) has been the favored optimization algorithm to complement ANN, but a thorough literature study has shown that there are gaps with current approaches which integrate PSO with ANN, including the optimization of network topology and the unreliable weight training process. These gaps have caused inferior effect on critical Artificial Intelligence (AI) applications and systems, particularly when predicting plant machinery and piping failure due to corrosion. The problem of corrosion prediction in the oil and gas domain remains unanswered due to the lack of a flexible prediction method which targets specific damage mechanisms that caused corrosion. This paper proposes a hybrid prediction method known as the Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN), which integrates several layers of PSO to optimize different parameters of the ANN. The multilayered PSO enables the method to optimize the network topology and train the set of synaptic weights at the same time using a hierarchical optimization approach. Through detailed discussion and literature study, the damage mechanism focused in this research is the CO2 corrosion and the dataset for this research is obtained from the NORSOK empirical model. The proposed AMPSONN method is tested against BP, MPSO and PSOBP methods on an industrial corrosion dataset for different test conditions. The results showed that AMPSONN performs best on all three problems, exhibiting high classification accuracies and time efficiency. Keywords—Corrosion; damage mechanism; prediction method; artificial neural network; particle swarm optimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

متن کامل

Prediction for Short-term Traffic Flow Based on Optimized Wavelet Neural Network Model

Short term traffic forecasting has been a very important consideration in many areas of transportation research for more than 3 decades. Short-term traffic forecasting based on data driven methods is one of the most dynamic and developing research arenas with enormous published literature. In order to improve forecasting model accuracy of wavelet neural network, an adaptive particle swarm optim...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017